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Motivation – Cooling a Bose gas

Evaporative cooling

– loss of energetic particles + thermalisation
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Dissipative cooling

– Vienna experiment: quasi-1D Bose gas

Rauer & Schmiedmayer group [Phys Rev Lett 2016]

kT ~ 0.25µ

d'ty corr'ns

– uniform particle loss

– nearly integrable system: no thermalisation



Motivation – Cooling and Dissipation

Evaporative cooling

– loss of energetic particles + thermalisation

Dissipative cooling

– Vienna experiment: quasi-1D Bose gas

Rauer & Schmiedmayer group [Phys Rev Lett 2016]

kT ~ 0.25µ

d'ty corr'ns

– uniform particle loss

– nearly integrable system: no thermalisation

Thermometers

– density fluctuations g2(z, z′)
Jacqmin & IB group

[Phys Rev Lett 2011]

dto after expansion Manz & Schumm group

[Phys Rev A 2010]

– density profile (wings)

– phase coherence length

`θ ≈ n̄λ2
T

CH, Sauer, Proukakis [J Phys B 2017]



Model – stochastic Gross-Pitaevskii with Loss

Homogeneous quasi-1D Bose gas

idΨ =

(
− h̄

2m
∂2
zΨ +

g

h̄
|Ψ|2Ψ

)
dt− iΓ

2
Ψ dt+dξ(z, t)

evaporation vs noise

Bogoliubov expansion Ψ(z, t) ≈√
n(z, t) +

∑
k

{
bk(t)uk(z; t) + b†k(t)vk(z; t)

}

classical limit:

〈Ek〉 = h̄ωk〈|bk|2〉 ≈ kBT → kBTk
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FIG. 3. Temperature of each mode, obtained from the
stochastic Gross-Pitaevskii equation, as a function of the
wavevector k of the mode, for different evolution times : �t =
0 (dotted green line), �t = 2.5 (dashed blue line) and �t = 5.3
(solid fat red line). The initial temperature is kBTi/(⇢ig) = 3.
As atoms are lost, the gas is driven out of equilibrium and Tk

acquire a k-dependence. For phononic particles, we observe
that Tk tends towards g⇢0(t), as expected from the linearized
approach. The smooth red solid line is the asymptotic result
of Eq. (8), valid at long times for excitations in the particle
regime, computed for �t = 5.3. Parameters of the simulation
are : kBTi/(~⇢i

p
g⇢i/m) = 3 ⇥ 10�3, ~�/(g⇢i) = 2 ⇥ 10�3

and mg/(~2⇢i) = 10�6.

frequency of phononic modes, i.e. modes of energy much
smaller than the chemical potential µ, are well approxi-
mated by !k = ⌫

p
k(k + 1)/2, where ⌫ is the harmonic

trapping frequency. Thus, for modes which stay within
the phonon regime during the entire loss process, Eq. (3)
predicts that their temperature decreases as e��t.

The description of higher-energy modes, called particle
modes, is not simple since they explore regions where the
Thomas-Fermi density vanishes and the quasi-condensate
approximation fails. It is reasonable however to believe
that the energy spectrum at energies much larger than µ
is close to the energy spectrum of free particles, so that
frequencies of these modes are equally spaced, separated
by ⌫. Since the chemical potential decreases during the
loss process, many excitations initially in the phononic
regime are transferred to the particle regime. Let us
consider such an excitation. Its frequency goes from
!k ' k⌫/

p
2 before the loss process [23], to about k⌫

at the end of the loss process when it lies in the par-
ticle regime. The ratio !k(tf )/!k(0) is thus larger than
one. According to the classical field prediction of Eq. (3),
one therefore expects these excitations to attain a higher
temperature than those lower excitations staying within
the phonon regime.

The effect of shot noise on the loss process is not easy
to treat for a trapped gas. However, we expect that,
as in the case of a homogeneous gas, the quantum noise
will amplify the non-thermal behavior of the system, so
the temperature differences between modes could be even

larger.
Experimental observation of a long-lived non-thermal

state — Observing the non-thermal nature of the gas
experimentally requires the ability to address modes of
different energies independently. This is a priori not an
easy task for gases confined in a box since all modes over-
lap spatially. However, since the atomic clouds in typical
experiments are confined longitudinally in a slowly vary-
ing harmonic potential, there is some spatial separation
of modes of different energy. At very low temperatures,
thermal excitations of energy larger than ⇢pg give the
density profile ‘wings’ that extend beyond the Thomas-
Fermi inverted parabola of peak density ⇢p. In contrast,
low-energy excitations lying in the phononic regime do
not extend beyond the Thomas-Fermi profile, but are re-
sponsible for long wavelength density fluctuations in the
central region of the cloud. The density profile of the gas
is thus most sensitive to high-energy excitations. Low-
energy excitations, on the other hand, can be probed
by investigating, within the Thomas-Fermi profile, atom-
number fluctuations h�N2i, in pixels of length � much
larger than the healing length ⇠0 [24].

Experimentally, we prepare clouds of 87Rb atoms by
radio-frequency evaporation in our atom-chip experi-
ment, as described in [25], and we record a set of den-
sity profiles taken under the same experimental condi-
tions. The longitudinal trapping frequency is 6.2 Hz,
while the transverse confinement is 1.9 kHz. Atoms are
polarized in the |F = 2, m = 2i hyperfine ground state,
where the interactions are characterized by the s-wave
scattering length a = 5.2 nm. Since the local density
approximation is well fulfilled longitudinally, the equilib-
rium profile can be computed using the equation of state
for longitudinally homogeneous gases, ⇢(µ, T ), where µ
is the chemical potential. Using the well-established
modified Yang-Yang equation of state [25, 26], where
the effective 1D coupling constant is g = 2~!?a, the
experimental density profile is fitted for a temperature
Tpr = 140 nK (see Fig. 4). We also extract atom-number
fluctuations h�N2i in each pixel from the same dataset,
giving an independent temperature measurement. Since
� is both much smaller than the cloud size and much
larger than the healing length, the physics of homoge-
neous gases is locally probed and thermodynamics pre-
dicts h�N2i = kBT�@⇢/@µ [25]. In Fig. 4, we plot h�N2i
versus the mean atom number in the pixel. Fitting the
large atom-number region, corresponding to pixels lying
inside the Thomas-Fermi profile, with the fluctuation-
dissipation relation and the quasi-condensate equation
of state, we extract a temperature Tfl = 80 nK (as sum-
marized in Fig. 4). The difference between Tpr and Tfl
is a signature that the cloud is out-of-equilibrium. We
also confirmed that, after the radio-frequency loss mech-
anism has been removed, this situation is stable over the
cloud lifetime of about one second (Fig. 4). Since the
profile is more sensitive to high-energy excitations while

t = 0

t = 2.5/Γ

t = 5.3/Γ

〈E
k
〉/
µ

(t
)

kξi

Johnson & IB group [Phys Rev A 2017]

– long-lived non-equilibrium state

weak/no mode coupling (• sGPe simulation)



Model – stochastic Gross-Pitaevskii with Loss

Homogeneous quasi-1D Bose gas

idΨ =

(
− h̄

2m
∂2
zΨ +

g

h̄
|Ψ|2Ψ

)
dt− iΓ

2
Ψ dt+ dξ(z, t)

evaporation vs noise

Bogoliubov expansion Ψ ≈ √n+
∑
k

{
bkuk + b†kvk

}

dropping density n(t) ∼ e−Γt 7→ ωk(t)

dbk =

(
−iωk −

Γ

2

)
bk dt+ dχk

mode-projected noise: squeezed

density 〈(Re dχk)2〉 =
Γdt

2

∫
dz (uk + vk)

2

phase 〈(Im dχk)2〉 =
Γdt

2

∫
dz (uk − vk)

2
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FIG. 3. Temperature of each mode, obtained from the
stochastic Gross-Pitaevskii equation, as a function of the
wavevector k of the mode, for different evolution times : �t =
0 (dotted green line), �t = 2.5 (dashed blue line) and �t = 5.3
(solid fat red line). The initial temperature is kBTi/(⇢ig) = 3.
As atoms are lost, the gas is driven out of equilibrium and Tk

acquire a k-dependence. For phononic particles, we observe
that Tk tends towards g⇢0(t), as expected from the linearized
approach. The smooth red solid line is the asymptotic result
of Eq. (8), valid at long times for excitations in the particle
regime, computed for �t = 5.3. Parameters of the simulation
are : kBTi/(~⇢i

p
g⇢i/m) = 3 ⇥ 10�3, ~�/(g⇢i) = 2 ⇥ 10�3

and mg/(~2⇢i) = 10�6.

frequency of phononic modes, i.e. modes of energy much
smaller than the chemical potential µ, are well approxi-
mated by !k = ⌫

p
k(k + 1)/2, where ⌫ is the harmonic

trapping frequency. Thus, for modes which stay within
the phonon regime during the entire loss process, Eq. (3)
predicts that their temperature decreases as e��t.

The description of higher-energy modes, called particle
modes, is not simple since they explore regions where the
Thomas-Fermi density vanishes and the quasi-condensate
approximation fails. It is reasonable however to believe
that the energy spectrum at energies much larger than µ
is close to the energy spectrum of free particles, so that
frequencies of these modes are equally spaced, separated
by ⌫. Since the chemical potential decreases during the
loss process, many excitations initially in the phononic
regime are transferred to the particle regime. Let us
consider such an excitation. Its frequency goes from
!k ' k⌫/

p
2 before the loss process [23], to about k⌫

at the end of the loss process when it lies in the par-
ticle regime. The ratio !k(tf )/!k(0) is thus larger than
one. According to the classical field prediction of Eq. (3),
one therefore expects these excitations to attain a higher
temperature than those lower excitations staying within
the phonon regime.

The effect of shot noise on the loss process is not easy
to treat for a trapped gas. However, we expect that,
as in the case of a homogeneous gas, the quantum noise
will amplify the non-thermal behavior of the system, so
the temperature differences between modes could be even

larger.
Experimental observation of a long-lived non-thermal

state — Observing the non-thermal nature of the gas
experimentally requires the ability to address modes of
different energies independently. This is a priori not an
easy task for gases confined in a box since all modes over-
lap spatially. However, since the atomic clouds in typical
experiments are confined longitudinally in a slowly vary-
ing harmonic potential, there is some spatial separation
of modes of different energy. At very low temperatures,
thermal excitations of energy larger than ⇢pg give the
density profile ‘wings’ that extend beyond the Thomas-
Fermi inverted parabola of peak density ⇢p. In contrast,
low-energy excitations lying in the phononic regime do
not extend beyond the Thomas-Fermi profile, but are re-
sponsible for long wavelength density fluctuations in the
central region of the cloud. The density profile of the gas
is thus most sensitive to high-energy excitations. Low-
energy excitations, on the other hand, can be probed
by investigating, within the Thomas-Fermi profile, atom-
number fluctuations h�N2i, in pixels of length � much
larger than the healing length ⇠0 [24].

Experimentally, we prepare clouds of 87Rb atoms by
radio-frequency evaporation in our atom-chip experi-
ment, as described in [25], and we record a set of den-
sity profiles taken under the same experimental condi-
tions. The longitudinal trapping frequency is 6.2 Hz,
while the transverse confinement is 1.9 kHz. Atoms are
polarized in the |F = 2, m = 2i hyperfine ground state,
where the interactions are characterized by the s-wave
scattering length a = 5.2 nm. Since the local density
approximation is well fulfilled longitudinally, the equilib-
rium profile can be computed using the equation of state
for longitudinally homogeneous gases, ⇢(µ, T ), where µ
is the chemical potential. Using the well-established
modified Yang-Yang equation of state [25, 26], where
the effective 1D coupling constant is g = 2~!?a, the
experimental density profile is fitted for a temperature
Tpr = 140 nK (see Fig. 4). We also extract atom-number
fluctuations h�N2i in each pixel from the same dataset,
giving an independent temperature measurement. Since
� is both much smaller than the cloud size and much
larger than the healing length, the physics of homoge-
neous gases is locally probed and thermodynamics pre-
dicts h�N2i = kBT�@⇢/@µ [25]. In Fig. 4, we plot h�N2i
versus the mean atom number in the pixel. Fitting the
large atom-number region, corresponding to pixels lying
inside the Thomas-Fermi profile, with the fluctuation-
dissipation relation and the quasi-condensate equation
of state, we extract a temperature Tfl = 80 nK (as sum-
marized in Fig. 4). The difference between Tpr and Tfl
is a signature that the cloud is out-of-equilibrium. We
also confirmed that, after the radio-frequency loss mech-
anism has been removed, this situation is stable over the
cloud lifetime of about one second (Fig. 4). Since the
profile is more sensitive to high-energy excitations while

t = 0

t = 2.5/Γ

t = 5.3/Γ
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Johnson & IB group [Phys Rev A 2017]

– long-lived non-equilibrium state

weak/no mode coupling (• sGPe simulation)



Model – stochastic Gross-Pitaevskii with Loss

Homogeneous quasi-1D Bose gas

idΨ =

(
− h̄

2m
∂2
zΨ +

g

h̄
|Ψ|2Ψ

)
dt− iΓ

2
Ψ dt+ dξ(z, t)

evaporation vs noise

Bogoliubov expansion Ψ ≈ √n+
∑
k

{
bkuk + b†kvk

}

dropping density n(t) ∼ e−Γt 7→ ωk(t)

dbk =

(
−iωk −

Γ

2

)
bk dt+ dχk

mode-projected noise: squeezed

density 〈(Re dχk)2〉 =
Γdt

4

∫
dz (uk + vk)

2

phase 〈(Im dχk)2〉 =
Γdt

4

∫
dz (uk − vk)

2

• this talk: trapped system
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FIG. 3. Temperature of each mode, obtained from the
stochastic Gross-Pitaevskii equation, as a function of the
wavevector k of the mode, for different evolution times : �t =
0 (dotted green line), �t = 2.5 (dashed blue line) and �t = 5.3
(solid fat red line). The initial temperature is kBTi/(⇢ig) = 3.
As atoms are lost, the gas is driven out of equilibrium and Tk

acquire a k-dependence. For phononic particles, we observe
that Tk tends towards g⇢0(t), as expected from the linearized
approach. The smooth red solid line is the asymptotic result
of Eq. (8), valid at long times for excitations in the particle
regime, computed for �t = 5.3. Parameters of the simulation
are : kBTi/(~⇢i

p
g⇢i/m) = 3 ⇥ 10�3, ~�/(g⇢i) = 2 ⇥ 10�3

and mg/(~2⇢i) = 10�6.

frequency of phononic modes, i.e. modes of energy much
smaller than the chemical potential µ, are well approxi-
mated by !k = ⌫

p
k(k + 1)/2, where ⌫ is the harmonic

trapping frequency. Thus, for modes which stay within
the phonon regime during the entire loss process, Eq. (3)
predicts that their temperature decreases as e��t.

The description of higher-energy modes, called particle
modes, is not simple since they explore regions where the
Thomas-Fermi density vanishes and the quasi-condensate
approximation fails. It is reasonable however to believe
that the energy spectrum at energies much larger than µ
is close to the energy spectrum of free particles, so that
frequencies of these modes are equally spaced, separated
by ⌫. Since the chemical potential decreases during the
loss process, many excitations initially in the phononic
regime are transferred to the particle regime. Let us
consider such an excitation. Its frequency goes from
!k ' k⌫/

p
2 before the loss process [23], to about k⌫

at the end of the loss process when it lies in the par-
ticle regime. The ratio !k(tf )/!k(0) is thus larger than
one. According to the classical field prediction of Eq. (3),
one therefore expects these excitations to attain a higher
temperature than those lower excitations staying within
the phonon regime.

The effect of shot noise on the loss process is not easy
to treat for a trapped gas. However, we expect that,
as in the case of a homogeneous gas, the quantum noise
will amplify the non-thermal behavior of the system, so
the temperature differences between modes could be even

larger.
Experimental observation of a long-lived non-thermal

state — Observing the non-thermal nature of the gas
experimentally requires the ability to address modes of
different energies independently. This is a priori not an
easy task for gases confined in a box since all modes over-
lap spatially. However, since the atomic clouds in typical
experiments are confined longitudinally in a slowly vary-
ing harmonic potential, there is some spatial separation
of modes of different energy. At very low temperatures,
thermal excitations of energy larger than ⇢pg give the
density profile ‘wings’ that extend beyond the Thomas-
Fermi inverted parabola of peak density ⇢p. In contrast,
low-energy excitations lying in the phononic regime do
not extend beyond the Thomas-Fermi profile, but are re-
sponsible for long wavelength density fluctuations in the
central region of the cloud. The density profile of the gas
is thus most sensitive to high-energy excitations. Low-
energy excitations, on the other hand, can be probed
by investigating, within the Thomas-Fermi profile, atom-
number fluctuations h�N2i, in pixels of length � much
larger than the healing length ⇠0 [24].

Experimentally, we prepare clouds of 87Rb atoms by
radio-frequency evaporation in our atom-chip experi-
ment, as described in [25], and we record a set of den-
sity profiles taken under the same experimental condi-
tions. The longitudinal trapping frequency is 6.2 Hz,
while the transverse confinement is 1.9 kHz. Atoms are
polarized in the |F = 2, m = 2i hyperfine ground state,
where the interactions are characterized by the s-wave
scattering length a = 5.2 nm. Since the local density
approximation is well fulfilled longitudinally, the equilib-
rium profile can be computed using the equation of state
for longitudinally homogeneous gases, ⇢(µ, T ), where µ
is the chemical potential. Using the well-established
modified Yang-Yang equation of state [25, 26], where
the effective 1D coupling constant is g = 2~!?a, the
experimental density profile is fitted for a temperature
Tpr = 140 nK (see Fig. 4). We also extract atom-number
fluctuations h�N2i in each pixel from the same dataset,
giving an independent temperature measurement. Since
� is both much smaller than the cloud size and much
larger than the healing length, the physics of homoge-
neous gases is locally probed and thermodynamics pre-
dicts h�N2i = kBT�@⇢/@µ [25]. In Fig. 4, we plot h�N2i
versus the mean atom number in the pixel. Fitting the
large atom-number region, corresponding to pixels lying
inside the Thomas-Fermi profile, with the fluctuation-
dissipation relation and the quasi-condensate equation
of state, we extract a temperature Tfl = 80 nK (as sum-
marized in Fig. 4). The difference between Tpr and Tfl
is a signature that the cloud is out-of-equilibrium. We
also confirmed that, after the radio-frequency loss mech-
anism has been removed, this situation is stable over the
cloud lifetime of about one second (Fig. 4). Since the
profile is more sensitive to high-energy excitations while

t = 0

t = 2.5/Γ

t = 5.3/Γ
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Bogoliubov modes in harmonic trap

Thomas-Fermi approximation, radius R

gn(z, t) ≈ µ(t)
(
1− z2/R(t)2

)

Legendre polynomials, ων = ω
√
ν(ν + 1)/2

uν + vν =

(
h̄ων
2µ

)1/2
√

2ν + 1

2R

Pν(z/R)
√

1− z2/R2

uν − vν =
2µ

h̄ων

(
1− z2

R2

)
(uν + vν)

Ho & Ma [J Low Temp Phys 1999]

adiabatically following R(t)

• not integrable at borders z → ±R

density

noise
〈(Re dχν)2〉 ∼

∫
dz (uν + vν)

2 →∞

u
+
v

−
−
−
u
−
v



Bogoliubov modes at the borderline

divergence = artefact of TF approximation

check with numerical solution ↑ →

Boundary layer technique

Fetter & Feder [Phys Rev A 1998]

Diallo & CH [J Phys B 2015]

linearised potential V (z) ≈ µ− F (z +R)

length scale δ = (h̄2/2mF )1/3 � R

Smooth density modes uν(z) + vν(z)

Airy Bessel Legendre

• • • numerics boundary layer inner/Legendre



Energy loss of trapped modes

General theory

dbk =

(
−iωk −

Γ

2

)
bk dt+ dχk

〈Ek〉 = h̄ωk〈|bk|2〉

⇒ d

dt
〈Ek〉 ≈ −

(
Γ +

ω̇k
ωk

)
Ek

+
Γ

2
h̄ωk

∫
dz
(
u2
k + v2

k

)

– evaluate numerically →

homogeneous gas

〈Eν〉 ' 3
4
µ

• non-equilibrium mode temperatures Tν

generalised Gibbs ensemble

• lowest temperature ∼ Vienna experiment (?)

in Palaiseau: kBT >∼ 0.3µ

Jacqmin & al [Phys Rev Lett 2011]



Conclusion

Dissipative vs evaporative cooling:

– non-uniform temperature

– weak coupling between excitations (. . . why?)

Model:

– Gross-Pitaevskii + shot noise = “beyond mean field”

– project on Bogoliubov modes: → Tk per mode

– compare to exp’tal temperatures: “nearly there”

expts: kBT ∼ 0.25 . . . 0.3µ

theo: >∼ 0.75µ
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FIG. 3. Temperature of each mode, obtained from the
stochastic Gross-Pitaevskii equation, as a function of the
wavevector k of the mode, for different evolution times : �t =
0 (dotted green line), �t = 2.5 (dashed blue line) and �t = 5.3
(solid fat red line). The initial temperature is kBTi/(⇢ig) = 3.
As atoms are lost, the gas is driven out of equilibrium and Tk

acquire a k-dependence. For phononic particles, we observe
that Tk tends towards g⇢0(t), as expected from the linearized
approach. The smooth red solid line is the asymptotic result
of Eq. (8), valid at long times for excitations in the particle
regime, computed for �t = 5.3. Parameters of the simulation
are : kBTi/(~⇢i

p
g⇢i/m) = 3 ⇥ 10�3, ~�/(g⇢i) = 2 ⇥ 10�3

and mg/(~2⇢i) = 10�6.

frequency of phononic modes, i.e. modes of energy much
smaller than the chemical potential µ, are well approxi-
mated by !k = ⌫

p
k(k + 1)/2, where ⌫ is the harmonic

trapping frequency. Thus, for modes which stay within
the phonon regime during the entire loss process, Eq. (3)
predicts that their temperature decreases as e��t.

The description of higher-energy modes, called particle
modes, is not simple since they explore regions where the
Thomas-Fermi density vanishes and the quasi-condensate
approximation fails. It is reasonable however to believe
that the energy spectrum at energies much larger than µ
is close to the energy spectrum of free particles, so that
frequencies of these modes are equally spaced, separated
by ⌫. Since the chemical potential decreases during the
loss process, many excitations initially in the phononic
regime are transferred to the particle regime. Let us
consider such an excitation. Its frequency goes from
!k ' k⌫/

p
2 before the loss process [23], to about k⌫

at the end of the loss process when it lies in the par-
ticle regime. The ratio !k(tf )/!k(0) is thus larger than
one. According to the classical field prediction of Eq. (3),
one therefore expects these excitations to attain a higher
temperature than those lower excitations staying within
the phonon regime.

The effect of shot noise on the loss process is not easy
to treat for a trapped gas. However, we expect that,
as in the case of a homogeneous gas, the quantum noise
will amplify the non-thermal behavior of the system, so
the temperature differences between modes could be even

larger.
Experimental observation of a long-lived non-thermal

state — Observing the non-thermal nature of the gas
experimentally requires the ability to address modes of
different energies independently. This is a priori not an
easy task for gases confined in a box since all modes over-
lap spatially. However, since the atomic clouds in typical
experiments are confined longitudinally in a slowly vary-
ing harmonic potential, there is some spatial separation
of modes of different energy. At very low temperatures,
thermal excitations of energy larger than ⇢pg give the
density profile ‘wings’ that extend beyond the Thomas-
Fermi inverted parabola of peak density ⇢p. In contrast,
low-energy excitations lying in the phononic regime do
not extend beyond the Thomas-Fermi profile, but are re-
sponsible for long wavelength density fluctuations in the
central region of the cloud. The density profile of the gas
is thus most sensitive to high-energy excitations. Low-
energy excitations, on the other hand, can be probed
by investigating, within the Thomas-Fermi profile, atom-
number fluctuations h�N2i, in pixels of length � much
larger than the healing length ⇠0 [24].

Experimentally, we prepare clouds of 87Rb atoms by
radio-frequency evaporation in our atom-chip experi-
ment, as described in [25], and we record a set of den-
sity profiles taken under the same experimental condi-
tions. The longitudinal trapping frequency is 6.2 Hz,
while the transverse confinement is 1.9 kHz. Atoms are
polarized in the |F = 2, m = 2i hyperfine ground state,
where the interactions are characterized by the s-wave
scattering length a = 5.2 nm. Since the local density
approximation is well fulfilled longitudinally, the equilib-
rium profile can be computed using the equation of state
for longitudinally homogeneous gases, ⇢(µ, T ), where µ
is the chemical potential. Using the well-established
modified Yang-Yang equation of state [25, 26], where
the effective 1D coupling constant is g = 2~!?a, the
experimental density profile is fitted for a temperature
Tpr = 140 nK (see Fig. 4). We also extract atom-number
fluctuations h�N2i in each pixel from the same dataset,
giving an independent temperature measurement. Since
� is both much smaller than the cloud size and much
larger than the healing length, the physics of homoge-
neous gases is locally probed and thermodynamics pre-
dicts h�N2i = kBT�@⇢/@µ [25]. In Fig. 4, we plot h�N2i
versus the mean atom number in the pixel. Fitting the
large atom-number region, corresponding to pixels lying
inside the Thomas-Fermi profile, with the fluctuation-
dissipation relation and the quasi-condensate equation
of state, we extract a temperature Tfl = 80 nK (as sum-
marized in Fig. 4). The difference between Tpr and Tfl
is a signature that the cloud is out-of-equilibrium. We
also confirmed that, after the radio-frequency loss mech-
anism has been removed, this situation is stable over the
cloud lifetime of about one second (Fig. 4). Since the
profile is more sensitive to high-energy excitations while
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