Dissipative cooling of Bogoliubov excitations

Carsten Henkel¹ and Isabelle Bouchoule²

¹U Potsdam – ²Institut d'Optique, Palaiseau DPG Erlangen March 2018

merci à:

A. Johnson (ATI Vienna)E. Reiß, T. Sauer (U Potsdam)

talks on web

Institute of Physics and Astronomy, Universität Potsdam, Germany www.quantum.physik.uni-potsdam.de

Motivation – Cooling a Bose gas

Evaporative cooling

- loss of energetic particles + thermalisation

Dissipative cooling

Vienna experiment: quasi-1D Bose gasRauer & Schmiedmayer group [Phys Rev Lett 2016]

- uniform particle loss
- nearly integrable system: no thermalisation

Motivation – Cooling and Dissipation

Evaporative cooling

loss of energetic particles + thermalisation

Dissipative cooling

Vienna experiment: quasi-1D Bose gasRauer & Schmiedmayer group [Phys Rev Lett 2016]

Thermometers

- density fluctuations $g_2(z,z^\prime)$ dto after expansion Jacqmin & IB group
[Phys Rev Lett 2011]

Manz & Schumm group
[Phys Rev A 2010]

- density profile (wings)
- phase coherence length

CH, Sauer, Proukakis [J Phys B 2017]

- uniform particle loss
- nearly integrable system: no thermalisation

Model – stochastic Gross-Pitaevskii with Loss

Homogeneous quasi-1D Bose gas

$$\mathrm{id}\Psi = \left(-\frac{\hbar}{2m}\partial_z^2\Psi + \frac{g}{\hbar}|\Psi|^2\Psi\right)\mathrm{d}t - \frac{\mathrm{i}\Gamma}{2}\Psi\,\mathrm{d}t + \mathrm{d}\xi(z,t)$$

evaporation vs noise

Bogoliubov expansion $\Psi(z,t) \approx$

$$\sqrt{n(z,t)} + \sum_{k} \left\{ b_k(t) u_k(z;t) + b_k^{\dagger}(t) v_k(z;t) \right\}$$

classical limit:

$$\langle E_k \rangle = \hbar \omega_k \langle |b_k|^2 \rangle \approx k_{\rm B} T \to k_{\rm B} T_k$$

Average mode energies

Johnson & IB group [Phys Rev A 2017]

long-lived non-equilibrium state
 weak/no mode coupling (• sGPe simulation)

Model – stochastic Gross-Pitaevskii with Loss

Homogeneous quasi-1D Bose gas

$$id\Psi = \left(-\frac{\hbar}{2m}\partial_z^2\Psi + \frac{g}{\hbar}|\Psi|^2\Psi\right)dt - \frac{i\Gamma}{2}\Psi dt + d\xi(z,t)$$

evaporation vs noise

Bogoliubov expansion
$$\Psi \approx \sqrt{n} + \sum_k \left\{ b_k u_k + b_k^\dagger v_k \right\}$$

dropping density $n(t) \sim e^{-\Gamma t} \mapsto \omega_k(t)$

$$db_k = \left(-i\omega_k - \frac{\Gamma}{2}\right)b_k dt + d\chi_k$$

mode-projected noise: squeezed

density
$$\langle (\operatorname{Re} d\chi_k)^2 \rangle = \frac{\Gamma dt}{2} \int dz \, (u_k + v_k)^2$$

phase $\langle (\operatorname{Im} d\chi_k)^2 \rangle = \frac{\Gamma dt}{2} \int dz \, (u_k - v_k)^2$

Average mode energies

Johnson & IB group [Phys Rev A 2017]

long-lived non-equilibrium state
 weak/no mode coupling (• sGPe simulation)

Model – stochastic Gross-Pitaevskii with Loss

Homogeneous quasi-1D Bose gas

$$\mathrm{id}\Psi = \left(-\frac{\hbar}{2m}\partial_z^2\Psi + \frac{g}{\hbar}|\Psi|^2\Psi\right)\mathrm{d}t - \frac{\mathrm{i}\Gamma}{2}\Psi\,\mathrm{d}t + \mathrm{d}\xi(z,t)$$

evaporation vs noise

Bogoliubov expansion
$$\Psi \approx \sqrt{n} + \sum_{k} \left\{ b_k u_k + b_k^{\dagger} v_k \right\}$$

dropping density $n(t) \sim e^{-\Gamma t} \mapsto \omega_k(t)$

$$\mathrm{d}b_k = \left(-\mathrm{i}\omega_k - \frac{\Gamma}{2}\right)b_k\,\mathrm{d}t + \mathrm{d}\chi_k$$

mode-projected noise: squeezed

density
$$\langle (\operatorname{Re} d\chi_k)^2 \rangle = \frac{\Gamma dt}{4} \int dz \, (u_k + v_k)^2$$

phase $\langle (\operatorname{Im} d\chi_k)^2 \rangle = \frac{\Gamma dt}{4} \int dz \, (u_k - v_k)^2$

this talk: trapped system

Average mode energies

Bogoliubov modes in harmonic trap

Thomas-Fermi approximation, radius R

$$gn(z,t) \approx \mu(t) \left(1 - z^2 / R(t)^2\right)$$

Legendre polynomials, $\omega_{\nu} = \omega \sqrt{\nu(\nu+1)/2}$

$$u_{\nu} + v_{\nu} = \left(\frac{\hbar\omega_{\nu}}{2\mu}\right)^{1/2} \sqrt{\frac{2\nu + 1}{2R}} \frac{P_{\nu}(z/R)}{\sqrt{1 - z^2/R^2}}$$

$$u_{\nu} - v_{\nu} = \frac{2\mu}{\hbar\omega_{\nu}} \left(1 - \frac{z^2}{R^2} \right) (u_{\nu} + v_{\nu})$$

 $\label{eq:hown} \mbox{Ho \& Ma [J Low Temp Phys 1999]} \mbox{adiabatically following } R(t)$

• not integrable at borders $z \to \pm R$

density noise
$$\langle (\operatorname{Re} d\chi_{\nu})^2 \rangle \sim \int dz \, (u_{\nu} + v_{\nu})^2 \to \infty$$

Bogoliubov modes at the borderline

divergence = artefact of TF approximation

check with numerical solution

\uparrow \rightarrow

Boundary layer technique

Fetter & Feder [*Phys Rev A* 1998]

Diallo & CH [*J Phys B* 2015]

linearised potential $V(z) \approx \mu - F(z+R)$ length scale $\delta = (\hbar^2/2mF)^{1/3} \ll R$

Smooth density modes $u_{\nu}(z) + v_{\nu}(z)$

• • • numerics —

— boundary layer

— inner/Legendre

Energy loss of trapped modes

General theory

$$db_k = \left(-i\omega_k - \frac{\Gamma}{2}\right)b_k dt + d\chi_k$$

$$\langle E_k \rangle = \hbar\omega_k \langle |b_k|^2 \rangle$$

$$\Rightarrow \frac{d}{dt} \langle E_k \rangle \approx -\left(\Gamma + \frac{\dot{\omega}_k}{\omega_k}\right)E_k$$

$$+ \frac{\Gamma}{2}\hbar\omega_k \int dz \left(u_k^2 + v_k^2\right)$$

– evaluate numerically ightarrow

- ullet non-equilibrium mode temperatures $T_
 u$ generalised Gibbs ensemble
- lowest temperature \sim Vienna experiment (?) in Palaiseau: $k_{\rm B}T\gtrsim 0.3\,\mu$

Jacqmin & al [Phys Rev Lett 2011]

Conclusion

Dissipative vs evaporative cooling:

- non-uniform temperature
- weak coupling between excitations (... why?)

Model:

- Gross-Pitaevskii + shot noise = "beyond mean field"
- project on Bogoliubov modes: $\to T_k$ per mode
- compare to exp'tal temperatures: "nearly there"

expts:
$$k_{\rm B}T$$
 \sim $0.25\dots0.3\,\mu$

theo: $\gtrsim 0.75 \,\mu$

